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Abstract

Repeat photography offers distinctive insights into ecological change, with

ground-based oblique photographs often predating early aerial images by

decades. However, the oblique angle of the photographs presents challenges for

extracting and analyzing ecological information using traditional remote sensing

approaches. Several innovative methods have been developed for analyzing

repeat photographs, but none offer a comprehensive end-to-end workflow

incorporating image classification and georeferencing to produce quantifiable

landcover data. In this paper, we provide an overview of two new tools, an

automated deep learning classifier and intuitive georeferencing tool, and

describe how they are used to derive landcover data from 19 images associated

with the Mountain Legacy Project, a research team that works with the world’s

largest collection of systematic high-resolution historic mountain photographs.

We then combined these data to produce a contemporary landcover map for a

study area in Jasper National Park, Canada. We assessed georeferencing accu-

racy by calculating the root-mean-square error and mean displacement for a

subset of the images, which was 4.6 and 3.7 m, respectively. Overall classifica-

tion accuracy of the landcover map produced from oblique images was 68%,

which was comparable to landcover data produced from aerial imagery using a

conventional classification method. The new workflow advances the use of

repeat photographs for yielding quantitative landcover data. It has several

advantages over existing methods including the ability to produce quick and

consistent image classifications with little human input, and accurately georefer-

ence and combine these data to generate landcover maps for large areas.

INTRODUCTION

Historical ground-based (i.e., oblique) landscape photo-

graphs are often overlooked as a source of information

for studying ecological change (Keane et al., 2009; Trant

et al., 2015; Webb et al., 2010). These photographs vary

in coverage and quality, from snapshots in personal

albums to extensive and systematic collections of images

used for land surveying. What many early landscape pho-

tographs have in common is they serve as a record of

ecosystems in most cases before the effects of pervasive

human impacts (see Steffen et al., 2015). Oblique land-

scape photographs can provide researchers with a spatially

explicit reference from which to evaluate contemporary

landscape features and change, including, for example,

species composition and configuration (Gruell, 1983;

Hayward et al., 2012).

Methods for analyzing ecological change using histori-

cal oblique photographs were pioneered in the field of

repeat photography: the practice of capturing photo-

graphs of a scene from the same location at different

points in time (Hastings & Turner, 1965; Rogers

et al., 1984). Repeat photography was first documented in

central Europe, initially as a technique for tracking glacial

change in the Alps, but it has since become an established

method for documenting different types of ecological and
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landscape change around the world (Webb et al., 2010).

In recent decades, repeat photography studies have devel-

oped a variety of approaches to elicit information from

oblique images and evaluate changes that have occurred

between the time periods captured in each photograph.

From early qualitative observations describing geomor-

phological and vegetative changes on the landscape (e.g.,

Byers, 2007; Gruell et al., 1982; Hastings & Turner, 1965),

methods have evolved to include innovative quantitative

approaches that generate measurable change metrics (e.g.,

Bayr & Puschmann, 2019; Rhemtulla et al., 2002; Roush

et al., 2007).

Researchers undertaking quantitative analysis in repeat

photography studies must perform two critical tasks: (1)

identify and/or classify landcover information in the

sequence of images; and (2) calculate the amount of

detectable change. Oblique landscape photographs pre-

sent several challenges to this process including perspec-

tive distortion, high interclass variation, image quality

issues, and varying scales relative to pixel size (i.e., a

pixel in the foreground of an image will capture less

geographic area than a pixel in the background; Bayr &

Puschmann, 2019; Clark & Hardegree, 2005; Kull, 2005;

Sanseverino et al., 2016). Additionally, the oblique per-

spective of ground-based photographs does not allow for

analysis using classification and change-detection tech-

niques developed for nadir imagery (Bayr & Pusch-

mann, 2019). Instead, studies have largely relied on

manual photointerpretation techniques for measuring

change.

Several different quantitative approaches have been

used to analyze oblique images. For example, Rhemtulla

et al. (2002) followed common aerial photographic inter-

pretation techniques (i.e., hand-drawn polygons on ace-

tate sheets overlaid on printed photographs) to delineate

and categorize areas of homogenous landcover for image

pairs. These data were then imported into a geographic

information system (GIS), which allowed the authors to

estimate relative vegetative change (as a percentage of

photograph area) by summing pixels in image pairs by

cover type (Rhemtulla et al., 2002). Fortin et al. (2019)

modernized this approach by creating digital copies of

image pairs and then manually classifying features of

interest using a digitizing tablet and the Image Analysis

Toolkit (IAT; custom software specifically developed for

analyzing repeat photographs; Sanseverino et al., 2016).

Hall (2001) and Roush et al. (2007) followed a different

approach that overlaid a grid on top of image pairs and

determined changes to vegetation cover per grid cell.

More recently, Trant et al. (2020) used a digitizing tablet

to delineate the treeline in 81 image pairs to assess high

elevation ecosystem change. Other approaches have used

a combination of image pairs and field observations to

produce quantitative data (Hoffman & Todd, 2010;

Masubelele et al., 2015; McClaran et al., 2010).

The different approaches for classifying landcover and

calculating change between historical and repeat photo-

graphs emphasize two important shortcomings. The first

is a reliance on manual photointerpretation to identify

and categorize landcover information. Although this tech-

nique is an accurate approach (Wulder, 1998), it can be

difficult to replicate and produce consistent results due to

the subjectivity of different interpreters (Wulder

et al., 2008). Manual photointerpretation is also a labori-

ous, time-consuming, and expensive undertaking

(Green, 2000). Recent studies have investigated the poten-

tial to use machine learning methods to classify informa-

tion in oblique image pairs. Jean et al. (2015) developed

an algorithm for classifying oblique photographs based on

texture analysis using a machine learning segmentation

algorithm that delineated “meta-categories” of forest and

non-forest. Bayr and Puschmann (2019) used a deep

learning algorithm to classify and evaluate woody vegeta-

tion change in pairs of repeat color photographs. How-

ever, both studies generated image classifications with

coarse resolution limited to just two landcover categories

and encountered challenges related to classifying historical

grayscale photographs.

The second shortcoming concerns the difficulty of

georeferencing oblique images, and therefore allowing

absolute rather than relative quantitative comparison. To

address this, Bozzini et al. (2012) developed the WSL

Monoplotting Tool for georeferencing oblique photo-

graphs using photogrammetry methods, whereby each

photographic pixel is plotted to its real-world location.

Stockdale et al. (2015) used this tool to georeference land-

cover data derived from repeat photographs (manually

interpreted using grid overlays) in a GIS at 100 m resolu-

tion. Recently, Bayr (2021) tested the accuracy of the

monoplotting tool using a fine-resolution digital elevation

model (DEM), reporting a mean displacement of 1.52 m

for georeferenced points relative to their location in aerial

photographs. However, the tool requires users to identify

control points from features recognizable in both oblique

photographs and nadir imagery, which can be difficult

and time-consuming. This is especially true if the oblique

photographs precede the nadir imagery by decades, which

is often the case for historical images. Further, no repeat

photography study has yet to develop a workflow that

harnesses the potential of automated classification

approaches in combination with georeferencing proce-

dures to produce repeatable, accurate, and fine scale land-

cover change data.

To address this need, we have created an end-to-end

workflow that deploys two recently developed custom

software tools: a trainable segmentation network and
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automated landcover classification algorithm, and a web-

based georeferencing tool. These tools were developed by

researchers associated with the Mountain Legacy Project

(MLP; http://mountainlegacy.ca/), a research team that

works with the world’s largest collection of systematic

high-resolution historic mountain photographs (Sansever-

ino et al., 2016). In this paper, we provide an overview of

the two original tools and describe how they are imple-

mented in a workflow for oblique photography analysis.

To demonstrate the application of this workflow we pro-

duce a composite landcover map for a study area in Jas-

per National Park using images in the MLP collection.

Our main purpose in this paper is to assess the perfor-

mance of the tools and evaluate the accuracy of the map

in relation to landcover data produced using more con-

ventional techniques (i.e., supervised classification of

30 cm aerial imagery captured over the study area in

2020). The intent of this paper is to validate the new

workflow for the purpose of producing landcover data

from historical oblique photographs. This would benefit

ecology and conservation by increasing the temporal

depth of spatially explicit studies focused on understand-

ing change dynamics in ecosystems and landscapes.

STUDY AREA

To assess the capability of the workflow to produce accu-

rate georeferenced landcover data, we required a study

area that had comprehensive oblique and orthographic

photographic coverage. Jasper National Park extends over

11 000 km2 of the eastern Canadian Rockies in west-

central Alberta (Fig. 1). Established in 1907, it is the larg-

est of a network of national, provincial, and wilderness

parks that stretch along the continental divide on either

side of the provincial border between Alberta and British

Columbia. In 1915, the central portion of Jasper National

Park was systematically photographed by Morrison Par-

sons Bridgland for the Dominion Land Survey (MacLaren

et al., 2005). Bridgland established a network of 92 cam-

era stations, typically on mountain peaks or prominent

outcrops, from which he captured a total of 735 photo-

graphs (Rhemtulla et al., 2002). The photographs, along

with horizontal and vertical measurements recorded with

a theodolite, were then used to produce the first topo-

graphic maps for the area (Higgs, 2003; MacLaren

et al., 2005). To the northeast of the Jasper townsite, sev-

eral camera stations provide unobstructed and overlap-

ping views of the Athabasca River valley, resulting in

almost 100% coverage of the landscape (Fig. 1). This area

was the focus of a repeat photography study by Rhemtulla

et al. (2002) that evaluated 80 years of landcover change

in the valley. In this paper we reanalyze the 2002 study

area using new repeat photographs captured in 2020 from

Bridgland’s original camera stations.

METHODS

Our workflow for producing landcover data features two

new tools for oblique image classification and georeferen-

cing. The Python Landscape Classifier (PyLC; https://

github.com/scrose/pylc) is a trainable segmentation net-

work that automates the classification of landcover types

in grayscale and color oblique photographs (Rose, 2020).

PyLC is based on an implementation of Deeplabv3+, a
top performing deep convolution neural network

(DCNN) optimized for semantic segmentation (i.e., each

pixel in an image is assigned a class or label; Chen

et al., 2017). The network was trained on 95 pairs of his-

torical and repeat photographs from the MLP collection

and their corresponding landcover classifications created

by MLP researchers using manual classification (Fortin

et al., 2019; Jean et al., 2015). PyLC classifies images into

8 landcover classes originally defined by Jean et al. (2015)

and based on the broad habitat categories found in the

Canadian Rockies (Table 1). Data augmentation (i.e., geo-

metric manipulations of training samples) was used to

increase underrepresented classes in the training dataset

to mitigate class imbalance (Table 1). This technique pro-

duced modest improvements to overall accuracy (+3%
historic/+1% repeat), but much larger gains for underrep-

resented classes (Rose, 2020). Rose (2020) reported that

the top performing models produced overall weighted F1

scores (a measure of the overlap between a segmentation

mask and a manually classified mask) of 0.841 for histori-

cal photographs, and 0.909 for contemporary repeat

photographs.

The georeferencing tool uses a new approach to relate

landcover classifications derived from an oblique photo-

graph to its correct geographic location (Higgs

et al., 2020). The tool utilizes a web-based ray tracing

algorithm to establish a correspondence between each

image pixel and DEM cell. The tool requires information

from the original photograph (camera location, azimuth

of the camera orientation, the lens field of view (FOV),

and the image dimensions) and a fine-resolution elevation

data. The landcover classification from the photograph is

georeferenced in three steps (Fig. 3). The algorithm gener-

ates a “virtual” version of an oblique photograph by trac-

ing rays from the camera FOV to visible pixels (viewed as

virtual columns) in a DEM (Fig. 3). The original photo-

graph is then aligned to the virtual photograph using

control points and a perspective transformation. Finally,

the algorithm exploits the relationship between the classi-

fied image (which shares the same dimensions as the
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original photograph) and the DEM to plot the landcover

values in real-world space.

To assess the capability of PyLC and the IAT georefer-

encing tool to produce accurate landcover data, we

undertook fieldwork in August/September 2020 to capture

third sequential repeat photographs (original 1915; first

repeats 1998/99) overlooking the study area. We required

new repeat photographs because the first repeats were

captured on black and white film and do not have the

required spectral information for analysis using the

current version of PyLC. Photographs were taken with a

51.4-megapixel FujiFilm GFX50s medium format digital

camera with a 32–64 mm F4 zoom lens, and a Novoflex

panoramic head and tripod. Field notes and location pho-

tographs (i.e., for camera tripod placement) recorded by

Rhemtulla et al. (2002) were instrumental in planning

and navigating to original station locations. Gridded

printouts of the historic photographs were used to fine-

tune the tripod position and align each repeat photograph

through the camera viewfinder. Detailed field notes

Figure 1. Map of the Athabasca River valley study area and camera station locations in Jasper National Park. Top right inset: location of study

area (red star) and Jasper National Park (green) in Western Canada. Bottom right inset: Amount of field of view overlap for the 19 images used in

the analysis. Map credits: ESRI, 2021; Natural Resources Canada, 2021.
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including coordinates of camera location using a Garmin

GPS and azimuth for each photograph using a Brunton

transit were recorded to assist with later georeferencing

tasks. Seven survey stations, each comprising multiple

photographs (5 to 12 photos per station), were revisited

yielding a total of 69 repeat photographs (Fig. 1).

High-resolution elevation data derived from airborne

LiDAR were obtained from Natural Resources Can-

ada (2021) and Jasper National Park. These data were for-

matted, mosaicked, and resampled to 2 m resolution to

produce a 30 × 40 km digital surface model (DSM) and

digital terrain model (DTM) for the study area (all GIS

tasks were performed in ArcGIS Pro 2.8.3; ESRI, 2021).

Note that the DSM produces more realistic virtual photo-

graphs by including surface features such as trees, which

can be used for alignment with the same trees in the obli-

que photograph. The DTM is then used for georeferen-

cing the classified images (avoiding the speckle effect that

would be present if using the DSM). To determine which

station photographs to include in this analysis, viewsheds

were generated for each of the 69 photographs using the

Viewshed tool (ESRI, 2021). Only image viewsheds that

had a considerable spatial footprint within the study area

were selected, which reduced the total number of images

to 19 (providing 99.3% coverage of the study area; Fig. 1;

Appendix A). We then classified landcover in each of the

19 images with PyLC using the landcover classes listed in

Figure 2 (Appendix B).

The 19 classified images produced by PyLC were then

georeferenced with the IAT georeferencing tool using the

elevation data and camera metadata (see steps described

in Fig. 3; Appendix C). To account for overlap between

the georeferenced images, all 19 viewsheds were combined

in ArcGIS Pro 2.8.3 using the cell statistics tool

(ESRI, 2021) with the majority overlay statistic selected

(i.e., the value that occurs most often for cells with multi-

ple values). Where cells had multiple majority values, the

tool produced a no data value, leading to only 91.7%

coverage of the study area. To address this, classified

images were dropped iteratively based on a visual assess-

ment of PyLC output quality with the majority cell value

recalculated each time until two viewsheds remained. The

resulting 19 grids were then mosaicked together in the

order they were produced using the Mosaic to New Ras-

ter tool (ESRI, 2021). This process brought the coverage

of the study area back up to 99.3%. The remaining

unclassified cells were filled using their nearest neighbor

values with the Nibble tool (ESRI, 2021). Several areas of

water were misclassified as snow/ice in the study area –
these areas were reclassified back to water using the

Reclassify tool (based on the assumption that there is no

ice in the valley bottom during the summer months;

ESRI, 2021). Similarly, areas of regeneration were reclassi-

fied to conifer as there have been no recorded wildfires

within the study area for decades. The final step for pro-

ducing the oblique landcover map involved clipping the

grid to the study area extent (Appendix D).

The accuracy of the IAT georeferencing tool was

assessed using one georeferenced image from each of the

seven camera stations. Eight test points were manually

digitized on each georeferenced image using identifiable

features within the study area. Control points for the

same features were then digitized on 30 cm RGBI high-

resolution aerial imagery obtained from Jasper National

Park captured over the study area in 2020. We deter-

mined georeferencing error by calculating the root-mean-

square error (RMSE) for each set of test and control

points. To compare accuracy with the WSL tool, we also

calculated the point displacement by measuring the

Euclidian distance between the test and control points

TABLE 1. Description of land cover categories for PyLC/SVM classification scheme. Percent change indicates adjustments to pixel class distribution

after data augmentation. SVM samples indicate the number of training samples per class used by the SVM classifier to generate the orthogonal

land cover map. Adapted from Rose, 2020.

Category Description

Pixel

distribution

Augmented pixel

dist.

Percent

change

SVM

samples

Coniferous forest Greater than 75% coniferous trees 0.219 0.2431 11 20

Barren ground Soil, sand, gravel, or rock 0.1155 0.1149 �0.5 44

Water Lakes and rivers 0.0008 0.0042 401 94

Regenerating area Visibly recently burned forest 0.021 0.0748 255.5 N/A

Herbaceous/shrub Shrubs, grasses, and herbaceous vegetation 0.0613 0.0638 4.1 49

Wetland Vegetation with a wet or aquatic moisture

regime

0.0082 0.0388 370.8 22

Broadleaf/

mixedwood

>70% broadleaf trees/patches with 30%–70%
broadleaf cover and the rest coniferous

trees and/or shrub

0.0095 0.0493 419.4 44

Snow/ice Snow and ice 0.008 0.0203 155.9 N/A

Non categorized Non categorized 0.5568 0.3909 �29.8 N/A
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(Bayr, 2021). Finally, we measured the distance and angle

of incidence between all camera locations and their asso-

ciated test points to evaluate their influence on point dis-

placement (Stockdale et al., 2015). A Generalized Linear

Model was constructed in ArcGIS Pro 2.8.3, using the fol-

lowing equation:

point displacement mð Þ ¼ intercept

þ β1ðdistance to cameraÞ
þ β2ðangle of incidenceÞ

To satisfy model assumptions, the mean displacement

values for each image were fit to a normal distribution

using a square root transformation.

We compared the oblique landcover map with land-

cover data produced from the 30 cm RGBI high-

resolution aerial imagery using a Support Vector Machine

(SVM) classifier in ArcGIS Pro 2.8.3 (ESRI, 2021). SVMs

are supervised machine learning algorithms optimized for

locating exemplars (i.e., support vectors) that form deci-

sion boundaries for separating landcover classes (Pal &

Mather, 2006). The SVM classifier was trained with sam-

ples of land cover from the aerial imagery using the same

classification scheme used for producing the oblique land

cover map (excluding snow/ice and regenerating areas). A

total of 273 samples were identified and their distribution

across the 6 land cover classes are reported in Table 1.

The results were resampled to 2 m using bilinear interpo-

lation (Appendix D).

We compared accuracy of the landcover maps generated

from the oblique and orthogonal imagery based on refer-

ence data derived from the 30 cm aerial imagery. We gener-

ated 198 equalized stratified random points (i.e., randomly

distributed points within each class, in which each class has

the same number of points to mitigate class size imbal-

ances) in ArcGIS Pro 2.8.3 and extracted the landcover

values from the two maps at each point (ESRI, 2021). We

interpreted reference landcover values for each random

point by visually assessing the aerial imagery. We then used

these data to compute a confusion matrix for each land-

cover map, which showed the overall accuracy based on the

percentage of correctly classified samples. User’s accuracy

(i.e., the probability that features on the map are present on

the ground) and producer’s accuracy (i.e., the probability

that features on the ground are correctly shown on the

map) were reported for each class.

RESULTS

The RMSE for the subset of 7 individual images used to

assess georeferencing accuracy ranged from 2.8 to 7.7 m,

with an overall mean of 4.6 m (Table 2). The mean dis-

placement between test and control points ranged from

1.8 to 6.9 m, with a mean of 3.7 m (SD= 2.2 m; Table 2).

The distance from camera to test points ranged from

1647.7 m to 10 512.9 m, with a mean of 5832.6 m; and the

angle of incidence ranged from 5.9° to 23.2°, with a mean

of 13.6°. Based on the results of the GLM, there was no

significant effect of distance to camera (P= 0.84,

α= 0.05) and angle of incidence (P= 0.29, α= 0.05) on

the mean point displacement.

The two landcover maps are largely consistent in

depicting the dominant features of the landscape. Both

maps were proficient in classifying the Athabasca River

and other water bodies, the open swaths of herbaceous/

shrub in the center of the study area, and patches of

broadleaf/mixedwood in the northern extent (Fig. 4).

However, the grain of the two maps is noticeably differ-

ent owing to the different approaches used. The oblique

land cover map is smoother in appearance and presents a

more generalized view of the study area. Comparatively,

the orthogonal land cover map has the classic speckled

appearance of a pixel-based classification and captures

more detail on the landscape. This is evidenced by the

completeness of the water bodies and linear features, and

an overall trend of intermixed classes, specifically where

herbaceous/shrub intermixes with barren ground and

conifer. However, the latter approach incorrectly classified

considerably more broadleaf/mixedwood in the study area

because of class confusion with coniferous forest. Wetland

was also overclassified consistently throughout the study

due to confusion with coniferous forest, herbaceous/

shrub, and barren ground.

In terms of landcover class distribution, barren ground

and water shared similar proportions for the two land-

cover maps while there were considerable differences in

the proportions of the other four landcover classes

(Fig. 5). The biggest difference was for coniferous forest:

the oblique landcover map classified 72.3% of the study

area as coniferous forest versus 45.2% for the orthogonal

map. However, the orthogonal landcover map classified

substantially more broadleaf/mixed wood (16.3%) than

the oblique map (1.5%). The orthogonal landcover map

Figure 2. Examples of image classifications produced by manual methods and PyLC for historical and repeat photograph pairs. Classification

accuracy was typically better for repeat photographs due to the higher image quality and richer spectral information. Figure adapted from

Rose (2020).

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7

J. Tricker et al. Landcover Derived From Oblique Images

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.379 by U

niversity O
f V

ictoria M
earns, W

iley O
nline L

ibrary on [22/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Landcover Derived From Oblique Images J. Tricker et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.379 by U

niversity O
f V

ictoria M
earns, W

iley O
nline L

ibrary on [22/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



also classified more wetland (7.9%) and herbaceous/shrub

(5.7%) than the oblique landcover map.

The overall accuracy of the oblique landcover map was

68% (Table 3). User’s accuracy produced scores above 75%

for four of the map classes. However, barren ground (51%)

and wetland (33%) had low user accuracy, with the latter

class typically misclassified as either herbaceous/shrub or bar-

ren ground. Scores for producer’s accuracy were more

erratic: broadleaf/mixed wood (90%) and water (90%)

scored highest; the lowest classes were herbaceous/shrub

(55%) and barren ground (49%). The broadleaf/mixed wood

and water classes achieved high scores for both producer’s

and user’s accuracy. User’s accuracy for the conifer class was

79%, but producer’s accuracy was lower due to class confu-

sion with barren ground. There was a larger contrast in

scores for herbaceous/shrub, with a high user’s accuracy

(79%) whereas producer’s accuracy (55%) was affected by

class confusion with wetland and barren ground.

The orthogonal landcover map had an overall accuracy

of 60% (Table 4) based on the same accuracy assessment

points generated for the map derived from oblique pho-

tographs. Water (85%) had the highest user’s accuracy

score, and wetland (38%) had the lowest. Notably, conifer

(48%) was frequently misclassified as broadleaf/mixed

wood. Similarly, for producer’s accuracy, water (93%)

scored highest, and wetland (29%) was lowest.

DISCUSSION

The results of the accuracy assessment indicate the strong

potential of a new workflow for oblique photography

analysis. When compared to studies georeferencing MLP

images with the WSL monoplotting tool, the mean dis-

placement error (3.7 m) for this analysis was considerably

lower than Stockdale et al. (2015) and McCaffrey and

Hopkinson (2017) who found error values of 14.7 and

21.7 m, respectively. A more recent WSL monoplotting

assessment by Bayr (2021) did produce a lower mean dis-

placement error value (1.52 m), but the authors used

images taken from lower elevations that were closer to

features of interest on the landscape compared to the

images in the current study. The steps for georeferencing

an image using the IAT georeferencing tool are arguably

more intuitive than the WSL monoplotting tool, as (1)

fewer control points are required, (2) the reference data

(i.e., the virtual photo) shares the same oblique view as

the image to be georeferenced, which makes selection of

reciprocal control points more intuitive, and (3) the

sweep function allows for immediate visual assessment of

alignment accuracy. However, there are drawbacks related

to the requirement of precise camera station metadata to

accurately plot the image classifications. Imprecise camera

azimuth and/or coordinates require time-consuming

adjustments to produce the optimal virtual photograph

for georeferencing. There are opportunities to further

develop the IAT georeferencing tool to streamline the

adjustment process for existing repeat photograph pairs.

New repeat photography fieldwork can also address this

issue by using precision instruments to accurately record

camera metadata such as survey-grade transits (incorpo-

rated into the camera head) and sub-meter GPS units

that utilize correction services (Walter, 2020).

Figure 3. Steps for georeferencing classified photographs in IAT. Step 1: a virtual photograph, replicating the original photograph FOV, is

produced using camera metadata and a DEM. Step 2: the original photograph is aligned to the virtual photograph using control points and a

perspective transformation, which are then used to align the image classification to the virtual photograph. Step 3: the cell values from the

aligned image classification are then georeferenced by exploiting the relationship between the virtual photograph and elevation data.

TABLE 2. Mean georeferencing error (i.e., point displacement) based on 8 test points per image, and mean distance of points from camera and

angle of incidence.

Station/Image#

Root mean

square error (m)

Mean point

displacement (m) (�SD)

Mean distance

(m) (range) AOI (°) (range)

Hawk DSCF0614 3.8 1.8 (�0.6) 4785.5 (3936.3–5955.7) 19.2 (14.9–23.2)
Pyramid DSCF0782 2.8 2.4 (�1.4) 7426.9 (6766.5–8206.9) 13.7 (12.3–15)
Esplanade DSCF0663 4.0 3.5 (�2.1) 5934.4 (4241–8244.4) 13.2 (8.9–17.6)
Palisade DSCF0838 4.6 3.8 (�2.8) 5616.2 (4490–7087) 12.1 (9.4–14.8)
Morro I DSCF0575 4.7 4.1 (�2.2) 2714.5 (1647.7–3267.4) 15.1 (11.9–24)
Greenock DSCF0547 3.6 3.2 (�2) 6983.2 (4263–10512.9) 9.8 (5.9–14.9)
Bonhomme I DSCF725 7.7 6.9 (�4.1) 7367.5 (5388.9–9561.4) 11.7 (7.1–16)
Mean 4.6 3.7 (�2.2) 5832.6 13.6
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The oblique landcover map produced from the oblique

images successfully depicted the dominant features of the

study area despite a moderate overall score in the accu-

racy assessment. While several classes produced high

scores for both producer’s and user’s accuracy, the overall

accuracy score was impacted by low scores for two classes:

wetland and barren ground. Wetland is a challenging class

to categorize, for both oblique and orthogonal imagery,

given its similarities to other non-wetland classes (Mah-

davi et al., 2018). This issue is reflected in class confusion

with herbaceous/shrub in the results. Classification accu-

racy for barren ground was hampered by confusion with

numerous classes, especially conifer and wetland. Confu-

sion with the conifer class may be explained by “shadow

effect” where patches of barren ground between trees are

obscured due to the oblique angle of the photographs.

There was also a significant outbreak of mountain pine

beetle in the park over the last decade, and the reddish-

brown color of beetle-killed pine trees may also have been

misclassified as barren ground. A final issue arises from

including roads and campgrounds in the barren ground

class—these features were often misclassified as wetland

as described above.

Comparatively, the overall accuracy for the orthogonal

landcover map was lower than the oblique landcover

map. The orthogonal landcover map did produce the

highest score for an individual class (water), and the

SVM algorithm produced better results when classifying

Figure 4. Landcover maps produced for the Athabasca River valley study area. Left panel: 30 cm high-resolution aerial image. Middle panel:

landcover map produced using oblique photographs (2 m resolution). Right panel: landcover map produced using orthogonal imagery (30 cm

resolution). Map credit: ESRI, 2021.
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Figure 5. Proportion of landcover classes (%) for the oblique and orthogonal maps.

TABLE 3. Confusion matrix for the oblique landcover map compared to reference aerial imagery indicating overall accuracy of 68%.

Class

Conifer

forest

Barren

ground Water

Herbaceous/

shrub Wetland

Broadleaf/

mixedwood Total

U

accuracy

Coniferous forest 26 2 0 3 1 1 33 0.79

Barren ground 6 17 0 5 3 2 33 0.51

Water 0 5 27 1 0 0 33 0.82

Herbaceous/

shrub

0 3 0 26 4 0 33 0.79

Wetland 1 8 3 10 11 0 33 0.33

Broadleaf/mixed 3 0 0 2 0 28 33 0.85

Total 36 35 30 47 19 31 198

P Accuracy 0.72 0.49 0.90 0.55 0.58 0.90 0.68

TABLE 4. Confusion matrix for the orthogonal landcover map compared to reference aerial imagery indicating overall accuracy of 60%.

Class Conifer forest Barren ground Water Herbaceous/shrub Wetland Broadleaf/mixedwood Total U accuracy

Coniferous forest 25 2 0 5 3 17 52 0.48

Barren ground 1 18 2 2 4 0 27 0.67

Water 0 0 28 0 5 0 33 0.85

Herbaceous/shrub 5 15 0 27 0 1 48 0.56

Wetland 2 1 0 4 5 1 13 0.38

Broadleaf/mixed 3 0 0 6 0 16 25 0.64

Total 36 36 30 44 17 35 198

P Accuracy 0.69 0.5 0.93 0.61 0.29 0.46 0.60
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barren ground. However, the algorithm was inconsistent

when classifying conifer due to a high amount of class

confusion with broadleaf/mixed wood forest. This may

relate to coniferous trees at different stages of growth

(i.e., more open or patchy) confusing the algorithm

(whereas this would be less of an issue when viewing

coniferous stands at an oblique angle). Similarly, there

was considerable class confusion between herbaceous/

shrub and barren ground, which may relate to the many

areas within the study area where these two classes are

intermixed.

A key advantage of the workflow described in this

paper is the speed, efficiency, and consistency of classify-

ing images using PyLC. However, noticeable errors are

present in the image classifications and the results indi-

cate that PyLC often confused wetland and barren ground

with other classes. These errors and misclassifications

could be explained by the data used to train PyLC

(although georeferencing error may contribute to classifi-

cation error too). At present the manually classified train-

ing datasets constitute less than 0.1% of the complete

MLP image collection, and they do not represent the full

variety landcover found throughout the region. For exam-

ple, [ 50% of the training data is from the Willmore

Wilderness Park in western Alberta, where there is a

dearth of anthropogenic features. This bottleneck of rep-

resentative training data limits model sensitivity or classi-

fying additional landcover classes—a more robust model

requires a wider range of photographs/classifications to be

included in the training data.

Improving PyLC accuracy could be addressed in several

ways. Manually corrected PyLC classifications are consid-

erably quicker to produce than full manual classifications

and could be an effective approach to expanding training

datasets (especially for underrepresented ecoregions in the

Canadian cordillera). Corrections typically require 1–3 h
of work per image and can be performed using photo-

editing software applications. Additionally, further work

to refine data augmentation methods can potentially

address a severe class imbalance in the training data sets,

as can models optimized for classifying specific environ-

ments. The addition of new landcover classes (i.e., devel-

oped areas/infrastructure, mountain pine beetle impacted

forest, etc.) may improve the classification accuracy for

other classes. Finally, PyLC improvements that incorpo-

rate semi-supervised approaches to segmentation have the

potential to reduce reliance on labeled training data

(Hong et al., 2015; Hung et al., 2018). Further, unsuper-

vised segmentation approaches employing iterative self-

training procedures have potential to eliminate the need

for training data altogether (Zou et al., 2018).

The mosaicking method for combining the 19 georefer-

enced image classifications makes it challenging to track

the source of error in the oblique landcover map. How-

ever, this approach can correct misclassification errors

from individual images when they are mosaicked together

Figure 6. Example of a classification error in an individual georeferenced image classification that was corrected when mosaicking all

georeferenced image classifications together using the mode value technique. Left panel: orthophoto showing the extent of the lake. Middle

panel: the lake is misclassified as conifer in single georeferenced image classification (derived from a photograph captured from the Hawk

Mountain station). Right panel: the lake is correctly classified as water in the oblique landcover map comprising 19 georeferenced image

classifications.
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using the mode value technique. An example demonstrat-

ing the advantage of this method is found at a lake

located to the south of the Snaring River mouth (Fig. 6).

One of the classified images from the Hawk Mountain

station incorrectly classifies the lake as conifer, whereas

this error is corrected in the combined oblique landcover

map. Another advantage of this approach is the mitiga-

tion of the shadow effect of the oblique photographs,

whereby landcover in the viewshed is obscured by trees

or elevated terrain. Combining georeferenced images from

different angles in the study area can fill in these gaps

and address issues where the height of trees from the

oblique angle does not result in an exaggerated footprint

on the landscape.

Other important considerations for the workflow

detailed in this paper relate to image quality, DEM reso-

lution, and the terrain of prospective study areas. While

PyLC is capable of classifying images of varying quality

(i.e., images captured with sub-optimal lighting), some

images do not lend themselves well to classification due

to the elevation of camera station relative to the land-

scape below, foreground vegetation obscuring large parts

of the field of view, or simply the distance from the cam-

era to the landcover area of interest. The accuracy of the

georeferenced image classifications is largely related to the

resolution of the DEM employed by the IAT georeferen-

cing tool. To date, there is limited coverage of fine-

resolution LiDAR-derived DEM data in the Canadian

Rockies and other mountainous regions in western Can-

ada. The availability of high-resolution elevation data

should be considered when undertaking such work for a

specific area. Another consideration is the elevation of

prospective study sites. The analysis presented in this

paper is focused on subalpine valley ecosystems, but the

real potential of these methods may lie in alpine environ-

ments where the oblique angle of the photographs can

offer richer detail than orthogonal imagery (Fortin

et al., 2019). This would be especially true for ecotone

shift assessments (i.e., McCaffrey & Hopkinson, 2020;

Peterson et al., 2022; Trant et al., 2020).

A logical next step is applying the workflow presented in

this paper to historical survey photographs in the MLP col-

lection captured between 1880 and 1950. This information

would predate the first aerial imagery surveys by decades

and would deepen existing monitoring reference data, pro-

viding insights into the configuration and composition of

ecosystems under historically contingent disturbance

regimes (Keane et al., 2009). Quantifying the historical

range of variability for ecosystems (i.e., Landres et al., 1999)

can provide a spatially explicit baseline for evaluating future

responses to altered disturbance regimes, climate warming,

and other anthropogenic stressors (Turner & Seidl, 2023).

However, different machine learning models are required

to classify color (3-band) and grayscale (single band)

images. While PyLC models configured for classifying his-

torical photographs have been developed (Rose, 2020), the

image classifications produced from historical grayscale

photographs presently lack the accuracy and consistency of

the classifications produced from their color counterparts.

Work is underway to improve machine learning approaches

to historical imagery.

In conclusion, the new workflow described in this

paper advances the use of oblique photographs to yield

quantitative landcover data. Our approach has several

advantages over existing methods, specifically the ability

to produce quick and consistent image classifications

with little human input, and accurately georeference and

combine these classifications to generate landcover data

for large areas. We have demonstrated that this

approach produces results of comparable accuracy to

landcover maps generated using supervised classification

and orthogonal imagery. Further developments for

improving this workflow would be best focused on three

areas: (1) expanding training data for PyLC that includes

new landcover classes; (2) improving the performance of

PyLC algorithm (i.e., incorporating updates to Dee-

plabv3+); and (3) increasing the accuracy of camera sta-

tion metadata to expedite georeferencing tasks.

Additionally, new research is required to investigate the

potential of this new workflow to support management

practices in protected areas. Historical and repeat land-

cover maps derived from oblique photographs can pro-

vide valuable data for vegetation monitoring, restoration

activities, and management planning in an era of rapid

change.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Appendix A. List of MLP oblique photographs used for

Jasper National Park study area

Appendix B. Oblique photographs and associated land-

cover classifications.

Appendix C. Georeferenced landcover classifications.

Appendix D. Maps.

16 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Landcover Derived From Oblique Images J. Tricker et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.379 by U

niversity O
f V

ictoria M
earns, W

iley O
nline L

ibrary on [22/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	 Abstract
	 INTRODUCTION
	 STUDY�AREA
	 METHODS
	rse2379-fig-0001

	 RESULTS
	rse2379-fig-0002

	 DISCUSSION
	rse2379-fig-0003
	rse2379-fig-0004
	rse2379-fig-0005
	rse2379-fig-0006

	 ACKNOWLEDGMENTS
	 REFERENCES
	rse2379-bib-0001
	rse2379-bib-0002
	rse2379-bib-0003
	rse2379-bib-0004
	rse2379-bib-0005
	rse2379-bib-0006
	rse2379-bib-0007
	rse2379-bib-0008
	rse2379-bib-0009
	rse2379-bib-0010
	rse2379-bib-0011
	rse2379-bib-0012
	rse2379-bib-0013
	rse2379-bib-0014
	rse2379-bib-0015
	rse2379-bib-0016
	rse2379-bib-0017
	rse2379-bib-0018
	rse2379-bib-0019
	rse2379-bib-0020
	rse2379-bib-0021
	rse2379-bib-0022
	rse2379-bib-0023
	rse2379-bib-0024
	rse2379-bib-0025
	rse2379-bib-0026
	rse2379-bib-0027
	rse2379-bib-0028
	rse2379-bib-0029
	rse2379-bib-0030
	rse2379-bib-0047
	rse2379-bib-0031
	rse2379-bib-0032
	rse2379-bib-0033
	rse2379-bib-0034
	rse2379-bib-0035
	rse2379-bib-0036
	rse2379-bib-0037
	rse2379-bib-0038
	rse2379-bib-0039
	rse2379-bib-0040
	rse2379-bib-0041
	rse2379-bib-0042
	rse2379-bib-0043
	rse2379-bib-0044
	rse2379-bib-0045
	rse2379-bib-0046

	rse2379-supitem

